IIT-K team has fashioned wearable technology from silk

A team of experts at the Indian Institute of Technology – Kharagpur has fashioned a hybrid material based on silk protein called silk fibroin due to unique properties of silk. This novel material has the potential to spawn prototype textile-based smart electronic devices for soldiers and defence personnel as well as for biomedical applications.

They have designed a hybrid photodetector using zinc oxide nanostructures on gold-nanoparticle-embedded silk protein for applications that combine electronics and light, said Samit K. Ray, currently officiating as the Director of S.N. Bose National Centre for Basic Sciences, Kolkata.

Ray said that a photo detector operates by converting light signals to a voltage or current. The hybrid material can store data and can detect light, both in the ultraviolet and visible wavelength range, thereby offering greater sensitivity and scope of detection. The USP of the hybrid material is its flexibility, stretchability, biocompatibility and biodegradability.

These properties are due to a combination of silk fibroin and semiconducting zinc oxide in presence of gold nanoparticles. Bombyx mori silk worms are the main producers of silk fibroins worldwide in the form of cocoons. These fibroins are attractive due to their high mechanical strength, toughness, thermal stability and biocompatibility/ biodegradability.

Although 95 percent of commercial electronics and computing systems deploy silicon as the semi-conductor material, Ray said that the team opted for zinc oxide instead. Conventional silicon chip is usually considered to be rigid, as brittle and breakable as window glass. Zinc oxide nanorod array embedded in silk platform is flexible and can withstand mechanical stress and bending. Moreover, the zinc oxide, under mechanical stress, generates electrical energy. This means these devices can be powered by the energy generated when a soldier is moving about.

In remote locations where power sources are scarce, the wearable technology can power up by mere movement of the user. Keeping in mind power scarcity it was important for crafting self-powered, flexible photo detector (light detector) devices.

Recent Posts

DKNY partners with Dubit to launch virtual fashion line on Roblox

DKNY and Dubit have introduced a virtual collection of handbags, hats, and jackets from its new 'Heart of New York'…

10 hours ago

Archroma showcases sustainable denim solutions

Archroma, a leading provider of sustainable specialty chemicals, is set to unveil a comprehensive array of denim solutions at the…

10 hours ago

Xefco secures funding to launch water-free dyeing technology

Xefco has successfully secured US$6.9m in funding to advance the commercialization of its groundbreaking water-free textile dyeing and finishing solution.

1 day ago

Researchers explore mushroom fibers as sustainable alternative

Researchers are exploring mushroom roots, mycelium, as a sustainable alternative to synthetic fibers in various products, including clothing and car…

1 day ago

Coachtopia collaborates with designers to revamp Ergo Bag

Coachtopia has partnered with upcycle designers worldwide to give a fresh look to its popular Ergo bag, highlighting sustainability through…

2 days ago

G7 vows to address environmental impact of fashion industry

France announced that the G7 will focus on tackling the environmental and climate effects of the fashion and textiles sector…

2 days ago